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Introduction
Alzheimer’s	Disease	(AD)	is	the	6th	leading	cause	of	death	in	the	
United	States	[1].	Today,	more	than	5	million	Americans	are	living	
with	Alzheimer’s	disease	 (AD),	and	1	 in	3	seniors’	dies	with	AD	
or	another	form	of	dementia	[2].	By	2050,	the	number	of	people	
expected	to	be	living	with	AD	will	rise	to	14	million	and	cost	an	
estimated	$1.1	trillion	dollars	[2].	Deaths	of	those	with	AD	were	
about	600,000	 in	2010	and	are	projected	 to	 rise	 to	1.6	million	
by	 2050,	which	 is	 expected	 to	 be	 some	 43%	 of	 all	 older	 adult	
deaths	[3].	Beta-amyloid	(Abeta)	plaques	and	hyperphosphylated	
Tau	(pTau)	neurofibrillary	tangles	have	been	the	dominant	focus	
of	 research	 on	 AD	 pathophysiology	 since	 the	 disease	was	 first	
recognized	by	Alois	Alzheimer	 in	1906	[4,5].	While	plaques	and	
tangles	are	diagnostic	for	AD	[5-7],	the cause(s)	of	their	soluble	
precursors	 that	 kill	 neurons	 has	 not	 been	 determined.	 The	
majority	of	AD	patients	are	diagnosed	after	60	years	of	age.	Many	
studies	point	to	aging	related	processes	like	inflammation	[8-14],	
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Abstract 
Context: Currently,	there	is	no	treatment	that	can	stop	the	progression	of	Alzheimer’s	
disease.	 We	 have	 used	 transgenic	 Drosophila melanogaster models	 and	 machine	
learning	to	develop	an	eight	component	botanical	mixture	(Geneaire™	ReBuilder™)	
that	targets	multiple	genetic	pathways	involved	in	brain	aging	and	dementia	that	are	
homologous	between	Drosophila and	humans.	
Objective: To	 test	 the	 effects	 of	 ReBuilder	 on	 the	 cognitive	 function	 of	 subjects	
diagnosed	with	mild	or	moderate	Alzheimer’s	disease.	
Methods: We	 recruited	 50	 subjects	with	mild	 to	moderate	 AD	 to	 participate	 in	 a	
double-blind,	 placebo-controlled	 clinical	 study.	 During	 the	 12-month	 pilot	 study,	
the	 subjects	 were	 evaluated	 quarterly	 on	 the	 Mini	 Mental	 State	 Exam	 (MMSE),	
Alzheimer’s	Disease	Cooperative	Study’s	Activities	of	Daily	Living	(ADCS-ADL),	and	the	
Clinical	Dementia	Rating	Sum	of	Boxes	(CDR-SB).	
Results: The	addition	of	ReBuilder	to	subjects’	existing	Namenda	and	Exelon	regimens	
stabilized	cognitive	decline	in	patients	with	mild	AD	and	slowed	cognitive	decline	in	
patients	with	moderate	AD.	
Conclusions: These	 results	 were	 observed	 in	 both	 sexes	 and	 in	 all	 ages	 tested.	
Importantly,	 no	 adverse	 side	 effects	 attributable	 to	 ReBuilder	 were	 reported.	 The	
results	of	this	clinical	pilot	warrant	further	study	of	ReBuilder	in	AD.
Keywords: Alzheimer's	 disease;	 Dementia;	 Aging;	 Neurology;	 APOE;	 Genetics;	
Cognition

neural	vascular	damage	[15-21],	neural	stress	[9,22-32],	altered	
cell	 metabolism	 [33-37],	 cellular	 autophagy	 [38-45],	 microglial	
dysfunction	[46-48],	mitochondrial	dysfunction	[49-52],	astrocyte	
function	 [53-59]	and	dietary	 factors	 [60-65]	as	potential	 causal	
factors	 in	 the	 decline	 of	 brain	 function	 over	 the	 decades	 that	
precede	an	actual	AD	diagnosis.	AD	is	a	multifaceted	pathology	
involving	many	 biochemical	 pathways	 and	 thus	 a	multifaceted	
therapeutic	approach	may	prove	beneficial.

Drosophila melanogaster, the	 common	 fruit	 fly,	 has	 been	
extensively	 studied	 and	 is	 a	 highly	 tractable	 genetic	 model	



2

2018
Vol. 3 No. 3: 14Journal of Clinical Medicine and Therapeutics

This article is available from: http://www.imedpub.com/clinical-medicine-and-therapeutics/

organism for understanding molecular mechanisms of human 
diseases. Many basic biological, physiological, and neurological 
properties are conserved between mammals and D. melanogaster, 
and nearly 75% of human disease-causing genes are believed to 
have a functional homolog in the fly [66,67]. Therefore we used 
genetic and machine learning approaches on age-related data 
bases for humans and flies to identify many homologous CNS-
specific genetic and biochemical pathways involved in longevity. 
We targeted genes known to be important in AD and screened 
botanical products known to interact with the pathways we 
identified using transgenic Drosophila models [68]. The result is 
ReBuilder, a 7-component botanical supplement that is effective 
in reducing neural dysfunction in our Drosophila model of AD. 
For this human pilot study, we added an eighth component, 
bioperine, to improve absorption of ReBuilder. 

Materials and Methods
Fifty human subjects of mixed gender between the ages of 60 
and 90 were recruited and enrolled in this double-blind, placebo-
controlled, IRB-approved pilot clinical study. The subjects had 
been on stable maximum tolerated doses of Memantine and/or 
Rivastigmine for at least 2 months, and nothing was changed in 
their standard therapy for the duration of our pilot study. The 
subjects were randomly assigned to either the active or placebo 
arm of the study. The subjects were evaluated approximately 
every three months (quarterly) from October 2013 to December 
2015. The subjects were referred to Genescient Corporation by 
William R. Shankle, MD, and evaluated in the office of Cristina 
Rizza, MD in Fountain Valley, CA. 

At the initial enrollment office visit, we administered the Mini 
Mental State Examination (MMSE) and the Clinical Dementia 
Rating Sum of Boxes (CDR-SB) to each subject. Each subject’s 
caregiver was interviewed using the Alzheimer’s disease 
Cooperative Study’s Activities of Daily Living (ADCS-ADL) 
Inventory to assess the subject’s current self-care capabilities. 
After this initial visit, the subjects were instructed to begin 
taking one capsule of ReBuilder in the morning and one capsule 
in the evening daily. Each subject had a caregiver who ensured 
compliance in taking all their medications. The subjects and 
their caregivers returned to our office approximately every three 
months to have the aforementioned tests repeated. ReBuilder is 
currently distributed by Geneaire.

The components of the ReBuilder treatment used in the clinical 

study and their known actives and targets are given in Table 1. 
The formulation is protected by US Patent 9744204.

Ethics
The subjects signed informed consent forms upon enrollment. 
This study protocol was approved by the Institute of Regenerative 
and Cellular Medicine Institutional Review Board (approval 
number: ICSS-2013-007). This study is registered on the Clinical 
Trails website of the United States government (NCT03611439).

Statistics
Throughout the 12-month period, the subjects’ scores on the 
MMSE, ADCS-ADL, and CDR-SB were recorded and compared to 
their initial baseline scores. The subjects’ mean test scores and 
changes in their mean test score were plotted in relation to their 
average baseline scores and presented with 95% confidence 
intervals. Only the subjects for whom we had data for the initial 
visit and all 4 subsequent quarters were included in the analysis 
presented here.

To maximize the number of subjects that would be assigned the 
active botanical compound, 43 subjects were given ReBuilder and 
only 7 patients were assigned to the placebo arm of the study. 
To make up for the small number of subjects in the placebo arm 
(only 5 completed the trial), we compared the data from our 
active subjects to previously published data from 471 AD subjects 
of matched demographics and AD symptoms from the study by 
Bernick et al. The subjects in this previously published study were 
treated and tested in the same manner as our placebo arm. Our 5 
placebo subjects experienced similar loss of cognitive function as 
measured by MMSE, ADCS-ADL, and CDR-SB as the 471 placebo 
subjects in the Bernick study. Moreover, with the large clinical 
study from Bernick et al. we were able to match all the active 
subjects in our pilot with large numbers of age and condition 
matched surrogate placebo controls.

Results
Thirty out of the 43 subjects receiving ReBuilder successfully 
completed our 12-month pilot study. Of those 30, 17 were 
categorized as “mild” in disease severity based on an initial 
score at enrollment of 21 to 30 points out of a possible 30 points 
on the Mini Mental Status Exam (MMSE), a widely used test 
for dementia. The remaining 13 subjects were categorized as 
“moderate” in disease severity based on an initial MMSE score 

Component Known Active (s) Targets References

Astragalus membranaceus (extract) Astrogalosides I-VII Flavenoids, 
HDTICs

Telomerase, Mitochondria, ptau,  mTOR, TNF-α, 
ERK, AMPK [69-75]

Berberine HCL Berberine (98%) Acetylcholinesterase, AMPK, α-adrenergic 
receptors, β-Amyloid [76-81]

Vaccinium uliginosum or 
Pterocarpus marsupium (extracts) Resveratrol Analogs PPARα, PGE2, AMPK, phosphodiesterase, 

Mitochondria [82-86]

L-Theanine L-Theanine (98%) NMDA receptors, EAATs, GABA receptors, eNOS, 
mitochondria [87-93]

Genistein Genistein (98%) ERα, AMPK, p450c21, PRPF8 [94-96]
Lithium Orotate Lithium NCS-1/Frequenin, Abeta, NMDA, GSK3B, ptau [97-105]

Selenium Glycinate Selenium PRPF8, ERCC1, Selenoproteins [106-108]

Table 1 Composition, known actives, and targets of treatment (US Patent 9744204).
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of	11	to	20	points.

During	 the	 course	 of	 the	 12-month	 pilot	 study,	 the	 mild	 and	
moderate	 subjects	 taking	 ReBuilder	 maintained	 MMSE	 scores	
close	 to	 their	 initial	 baseline	 scores.	 The	 ReBuilder	 	 	

	 	 	
subjects

	
did

	not 	experience 	the 	rate 	of 	decline 	seen
	

in
	

the
	

subjects
	

from
	

the
	Bernick 	study 	[109], 	which 	we 	used 	as

	
our

	
benchmark

	
control

	
for

	the 	expected 	rate 	of 	decline 	during 	the
	

same
	

study
	

(Figure 1A). 

Looking	at	the	17	mild	subjects	who	completed	the	pilot,	there	
appears	to	be	a	pronounced	preservation	of	the	baseline	MMSE	
scores	after	12	months	of	treatment	(Figure 1B). 

Looking	 at	 the	 13	 subjects	 with	 moderate	 AD	 who	 received	
ReBuilder	 and	 completed	 the	 pilot	 study,	 there	 is	 also	 a	
pronounced	preservation	of	baseline	MMSE	score.	The	moderate	
AD	 subjects	 taking	 ReBuilder,	 as	 with	 the	 mild	 AD	 subjects,	
continued	to	score	much	closer	to	their	baseline	than	the	subjects	
in	the	Bernick	study	(Figure 1C).

The	 trend	 of	 baseline	 score	 maintenance	 in	 subjects	 taking	
ReBuilder	 continues	 if	 we	 separate	 the	 subjects	 by	 gender.	
Generally,	Alzheimer’s	disease	affects	more	women	than	men	due	
to	women	having	longer	average	lifespans,	and	possibly	because	
of	hormonal	differences	between	the	genders.	In	our	pilot	study,	
we	had	nearly	equal	numbers	of	 each	gender,	with	16	women	
and	14	men.	Both	genders	saw	positive	effects	when	ReBuilder	
was	added	to	their	standard	therapy	(Figures 1D and 1E).

The	 E4	 variant	 of	 the	 Apolipoprotein E (APOE)	 gene	 puts	 an	
individual	at	an	increased	risk	of	developing	Alzheimer’s	disease.	
The	risk	increase	is	present	in	an	individual	with	one	copy	of	the	
E4	allele,	and	greater	still	if	the	individual	has	2	copies.	The	APOE4 
gene	variant	is	associated	with	an	increased	number	of	amyloid	
protein	 plaques	 in	 the	 brain	 tissue	 of	 affected	 individuals	 and	
earlier	onset	of	AD	symptoms	[110].	In	our	pilot	study,	we	had	14	
subjects	taking	ReBuilder	who	carried	at	least	one	E4	allele.	While	
it	took	6	months	for	these	subjects	to	see	an	effect	from	taking	
ReBuilder,	the	overall	changes	in	their	MMSE	scores	were	positive	
by	Q4	(Figure 1F).

The	 Alzheimer’s	 Disease	 Cooperative	 Study	 Activities	 of	 Daily	
Living	 (ADCS-ADL)	 is	 a	questionnaire	widely	used	 to	 assess	 the	

Figure 1A Mean	MMSE	 Scores	 for	 All	 Subjects.	 Average	MMSE	
scores	 for	 ReBuilder	 study	 subjects	 and	 the	 Bernick	
group	over	the	course	of	12	months.

Figure 1B Mean	 MMSE	 Scores	 for	 Mild	 Subjects.	 Average	
MMSE	scores	for	mild	subjects	in	the	ReBuilder	study	
compared	to	the	Bernick	group	over	12	months.

Figure 1C Mean	 Mini	 Mental	 State	 Exam	 (MMSE)	 Scores	
for	 Moderate	 Subjects.	 	 Average	 MMSE	 score	 for	
moderate	subjects	in	the	ReBuilder	study	compared	to	
the	Bernick	group.

Figure 1D Mean	 Mini	 Mental	 State	 Exam	 (MMSE)	 Scores	 for	
Female	 Subjects.	 	 Female	 subjects	 taking	 ReBuilder	
during	our	pilot	study	were	able	to	maintain	a	MMSE	
score	closer	to	the	baseline	than	those	in	the	Bernick	
study.

competence	of	 patients	with	Alzheimer’s	Disease	 (AD)	 in	 basic	
and	 instrumental	 activities	 of	 daily	 living	 (ADL).	 The	 ADCS-ADL	
scores	competence	 in	daily	activities	on	a	78-point	scale.	Slight	
score	changes	 in	 this	assessment	can	 indicate	that	a	subject	 is,	
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or is not, able to choose appropriate clothing or prepare a simple 
meal. 

On average, our subjects taking ReBuilder gained 2.34 points on 
this measure after 12 months of treatment. The control group 
is expected to have lost 6.67 points during the same amount of 
time (Figure 2A). 

The 17 mild subjects who completed the pilot appear to display 
an improvement, on average, of ADCS-ADL scores after 12 months 
of treatment (Figure 2B). 

The ADCS-ADL scores of the 13 subjects with moderate AD who 
completed the pilot study did not see an overall improvement 
compared to their mean baseline scores after 12 months of 
treatment. However, the mean point loss of 1.69 still falls quite 
short of the projected point loss of 6.67 based on the Bernick 
study (Figure 2C).

When the subjects in our pilot study are separated by gender, 
the overall improvement in activities of daily living remains. 
The subjects taking ReBuilder achieve and maintain a clinically 
meaningful improvement in the ADCS-ADL assessment that is 

Figure 1E Mean Mini Mental State Exam (MMSE) Scores for Male 
Subjects.  Male subjects taking ReBuilder during our 
pilot study took 6 months to see an improvement in 
their MMSE score.  BY Q4 the men rebounded back to 
their baseline score.  

Figure 1F Mean Mini Mental State Exam (MMSE) Scores for 
APOE4 Subjects.  Average MMSE scores of the ReBuilder 
subjects eventually rebounded to baseline by the end 
of 12 months.

Figure 2A Mean Alzheimer’s Disease Cooperative Study Activities 
of Daily Living (ADCS-ADL) Scores for All Subjects.   The 
mean score for all subjects taking ReBuilder rises above 
their initial baseline average score and maintains that 
improvement for the duration of the pilot study.

Figure 2B Mean Alzheimer’s Disease Cooperative Study Activities 
of Daily Living (ADCS-ADL) Scores for Mild Subjects.  On 
average, the Mild AD subjects taking ReBuilder improved 
in Activities of Daily Living and remained above baseline 
for the duration of the study.

Figure 2C Mean Alzheimer’s Disease Cooperative Study Activities 
of Daily Living (ADCS-ADL) Scores for Moderate Subjects.  
Moderate subjects taking ReBuilder remained close to 
their baseline score for the duration of the study.
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above their average baseline scores, and far above the score 
projected based on the Bernick study at the end of 12 months, 
regardless of gender (Figures 2D and 2E).

Separating out the subjects with the APOE4 genetic variant, a 
clinically meaningful improvement in the ADCS-ADL assessment 
is still observed at the end of 12 months (Figure 2F).

The Clinical Dementia Rating (CDR-SB) is used to quantify the 
severity of symptoms of dementia. This measure assesses a 
subject’s cognitive and functional performance in six areas: 
memory, orientation, judgment & problem solving, community 
affairs, home and hobbies, and personal care. Scores in each of 
these are combined to obtain a composite score, with a higher 
score indicating greater severity of dementia symptoms.

Overall, the subjects taking ReBuilder in our pilot study 
maintained a CDR-SB score close to their baseline. This suggests 
that the subjects’ severity of dementia symptoms did not 
increase as expected over the 12-month pilot study and that they 
experienced better stability in their symptoms (Figure 3A). 

For our mild subjects, the mean CDR-SB scores stayed above 
baseline for the latter portion of the pilot, possibly indicating a 
reduction in dementia symptoms (Figure 3B).

For moderate subjects, the severity of their dementia symptoms 
does increase by the end of the pilot study, but not to the same 
degree that is seen in the Bernick group over the same time 
period (Figure 3C).

When the subjects taking ReBuilder are separated by gender, 
we still see a reduction in dementia severity as indicated by the 
average CDR-SB scores (Figures 3D and 3E).

Looking at the subjects with the APOE4 genetic variant [110], 
we also see a reduction in dementia symptoms. This suggests 
that ReBuilder can improve the symptoms of those genetically 
predisposed to Alzheimer’s disease (Figure 3F).

On the whole, the above results show that subjects taking 
ReBuilder during our 12-month pilot at least slowed in their AD 
progression as indicated by the MMSE, ADCS-ADL, and CDR-SB. In 
some measures, the subjects appear to stabilize and even reduce 
their AD symptoms. No adverse side effects such as changes in 
mood, sleeping habits, balance issues, or digestive disturbances 
were observed in the subjects treated with ReBuilder.

Figure 2D Mean Alzheimer’s Disease Cooperative Study Activities 
of Daily Living (ADCS-ADL) Scores for Female Subjects.  
Female subjects taking ReBuilder maintained scores above 
their baseline for the duration of the study.

Figure 2E Mean Alzheimer’s Disease Cooperative Study Activities of 
Daily Living (ADCS-ADL) Scores for Male Subjects.   Male 
subjects taking ReBuilder maintained ADL scores above 
their baseline for the duration of the study.

Figure 2F Mean Alzheimer’s Disease Cooperative Study Activities 
of Daily Living (ADCS-ADL) Scores for APOE4 Subjects.  
Subjects genetically predisposed to Alzheimer’s taking 
ReBuilder maintained ADL scores close to their baseline for 
the duration of the study.

Figure 3A Mean Clinical Dementia Rating Sum of Boxes (CDR-SB) 
Scores for All Subjects. On average, CDR-SB scores stayed 
very close to baseline for subjects taking ReBuilder. Note 
that the score scale on the Y-axis is inverted to show that 
a decreasing CDR-SB score indicates improvement of 
symptoms.
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Figure 3B Mean	 Clinical	 Dementia	 Rating	 Sum	 of	 Boxes	 (CDR-SB)	
Scores	 for	Mild	 Subjects.	Mild	 subjects	 taking	ReBuilder	
saw	a	reduced	CDR-SB	score	by	the	end	of	the	pilot	study.	
Note	that	the	score	scale	on	the	Y-axis	is	inverted	to	show	
that	a	decreasing	CDR-SB	score	indicates	improvement	of	
symptoms.

Figure 3C Mean	 Clinical	 Dementia	 Rating	 Sum	 of	 Boxes	 (CDR-SB)	
Scores	 for	 Moderate	 Subjects.	 Moderate	 AD	 subjects	
taking	 ReBuilder	 had	 symptoms	 close	 to	 baseline	 until	
the	last	quarter	of	the	study.	Note	that	the	score	scale	on	
the	Y-axis	 is	 inverted	to	show	that	a	decreasing	CDR-SB	
score	indicates	improvement	of	symptoms.

Figure 3D Mean	 Clinical	 Dementia	 Rating	 Sum	 of	 Boxes	 (CDR-
SB)	 Scores	 for	 Female	 Subjects.	 Female	 Subjects	 taking	
ReBuilder	 saw	 a	 reduction	 in	 dementia	 severity	 on	
the	 CDR-SB.	 Note	 that	 the	 score	 scale	 on	 the	 Y-axis	 is	
inverted	to	show	that	a	decreasing	CDR-SB	score	indicates	
improvement	of	symptoms.

Figure 3E Mean	Clinical	Dementia	Rating	Sum	of	Boxes	 (CDR-SB)	
Scores	for	Male	Subjects.	Male	subjects	taking	ReBuilder	
reduced	their	dementia	rating	on	the	CDR-SB.	Note	that	
the	 score	 scale	 on	 the	 Y-axis	 is	 inverted	 to	 show	 that	
a	 decreasing	 CDR-SB	 score	 indicates	 improvement	 of	
symptoms.2015.

Discussion
The	 subjects	 with	 mild	 and	 moderate	 AD	 in	 our	 pilot	 study	
experienced	 clinically	 meaningful	 stabilization	 in	 their	 disease	
progression	over	a	12	month	period	compared	with	the	decline	
expected	based	on	the	Bernick	study	[109].	The	results	for	mild	
and	moderate	AD	subjects	occurred	 regardless	of	 the	 subjects’	
age,	gender,	or	genetic	status	with	respect	to	the	APOE4	genetic	
variant	 [111-114].	The	benefit	of	 reduced	mental	decline	by	all	
measures	was	 greater	 in	 patients	 diagnosed	with	mild	 AD	 and	
less	 pronounced	 in	 moderate	 AD	 subjects.	 This	 suggests	 that	
treatment	with	ReBuilder	is	beneficial	regardless	of	age,	gender,	
APOE4	 status,	 or	 disease	 severity	when	 added	 to	 standard	 AD	
treatment. 

Though	no	quantitative	biomarker	studies	were	done	during	this	
pilot	study,	the	positive	effects	seen	in	cognitive	function	suggest	

that	 there	 are	 biological	 changes	 taking	 place	 that	 should	 be	
investigated	further.	ReBuilder	is	composed	entirely	of	botanical	
substances	that	are	generally	regarded	as	safe	(GRAS)	by	the	FDA,	
and	no	deleterious	side	effects	were	reported	or	observed	that	
were	attributed	to	ReBuilder	in	this	pilot	study.	Therefore,	there	is	
the	potential	for	ReBuilder	to	not	only	 	 used	as	a	supplemental	
AD	 treatment,	 but	 also	 prophylactically	 as	 a	 part	 of	 a	 normal	
individual’s	daily	dietary	supplement	regimen.	

While	 we	 cannot	 make	 definitive	 claims	 on	 the	 success	 of	
ReBuilder	due	to	the	small	number	of	subjects	 in	this	pilot,	we	
can	say	that	the	improvement	in	cognitive	function	that	we	have	
seen	in	subjects	taking	ReBuilder	warrants	further	study	in	a	larger	
AD	cohort	with	biomarker	assessment.	In	future	clinical	studies,	
advanced	imaging	technologies	[33,115-120]	should	be	used	to	
verify	that	ReBuilder	has	effects	on	structural	outcomes	such	as	
amyloid	plaques,	Tau	tangles,	and	neuronal	loss	prevention	with	
time.

be
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Figure 3F Mean Clinical Dementia Rating Sum of Boxes (CDR-SB) 
Scores for APOE4 Subjects. Subjects taking ReBuilder who 
are positive for the APOE4 gene variant saw a reduction 
in dementia symptoms, on average, as measured by 
the CDR-SB.   Note that the score scale on the Y-axis is 
inverted to show that a decreasing CDR-SB score indicates 
improvement of symptoms.
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