
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/330301005

Botanical Mixture Stabilizes Cognitive Function in Patients with Mild and

Moderate Alzheimer’s Disease

Article · August 2018

CITATIONS

0
READS

3,074

9 authors, including:

Some of the authors of this publication are also working on these related projects:

Epigenetic effects on aging View project

Hi Michael. View project

Kennedy Matsagas Schaal

Genescient Corp.

7 PUBLICATIONS   53 CITATIONS   

SEE PROFILE

Bryant Villeponteau

Centagen Inc.

63 PUBLICATIONS   5,474 CITATIONS   

SEE PROFILE

Vincent Simmon

Spinogenix, Inc.

67 PUBLICATIONS   3,587 CITATIONS   

SEE PROFILE

Gregory Benford

University of California, Irvine

190 PUBLICATIONS   3,551 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Kennedy Matsagas Schaal on 11 January 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/330301005_Botanical_Mixture_Stabilizes_Cognitive_Function_in_Patients_with_Mild_and_Moderate_Alzheimer%27s_Disease?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/330301005_Botanical_Mixture_Stabilizes_Cognitive_Function_in_Patients_with_Mild_and_Moderate_Alzheimer%27s_Disease?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Epigenetic-effects-on-aging?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Hi-Michael?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kennedy-Schaal-2?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kennedy-Schaal-2?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kennedy-Schaal-2?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bryant-Villeponteau?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bryant-Villeponteau?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bryant-Villeponteau?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vincent-Simmon?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vincent-Simmon?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vincent-Simmon?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gregory-Benford-2?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gregory-Benford-2?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-California-Irvine?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gregory-Benford-2?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kennedy-Schaal-2?enrichId=rgreq-820e25696e7353a6ee8d2a7777a9a8bf-XXX&enrichSource=Y292ZXJQYWdlOzMzMDMwMTAwNTtBUzo3MTM2ODU3OTAxMDk2OTZAMTU0NzE2NzM2MDEyNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


2018
Vol. 3 No. 3: 14

1

iMedPub Journals
www.imedpub.com

Research Article

Journal of Clinical Medicine and Therapeutics

© Copyright iMedPub | This article is available from: http://imedpub.com/clinical-medicine-and-therapeutics\

Matsagas K1*, Villeponteau 
B2, Shankle WR3,4, Cruise 
RJ1, Morales S1, Goertzel B1, 
Simmon VF1, Benford G5 and 
Rizza C1

1.	 Genescient	 Corporation,	 Fountain	
Valley,	 California,	 United	 States	 of	
America 

2.	 Centagen	 Inc.,	 Boulder,	 Colorado,	
United	States	of	America	

3.	 Shankle	Clinic,	Hoag	Hospital,	Newport	
Beach,	 California,	 United	 States	 of	
America 

4.	 Department	 of	 Cognitive	 Sciences,	
University	of	California	at	Irvine,	Irvine,	
California,	United	States	of	America

5.	 Department	of	Physics	and	Astronomy,	
University	of	California	at	Irvine,	Irvine,	
California,	United	States	of	America

*Corresponding author: Kennedy	
Matsagas

 kmatsagas@genescient.com

Genescient	Corporation,	Fountain	Valley,	
California,	United	States	of	America.

Tel: 55622098912

Citation: Matsagas	K,	Villeponteau	B,	
Shankle	WR,	Cruise	RJ,	Morales	S, 	et 	
al.	(2018)	Botanical	Mixture	Stabilizes	
Cognitive	Function	in	Patients	with	Mild	and	
Moderate	Alzheimer’s	Disease.	J	Clin	Med	
Ther.	Vol.	3	No.	3:06

Introduction
Alzheimer’s	Disease	(AD)	is	the	6th	leading	cause	of	death	in	the	
United	States	[1].	Today,	more	than	5	million	Americans	are	living	
with	Alzheimer’s	disease	 (AD),	and	1	 in	3	seniors’	dies	with	AD	
or	another	form	of	dementia	[2].	By	2050,	the	number	of	people	
expected	to	be	living	with	AD	will	rise	to	14	million	and	cost	an	
estimated	$1.1	trillion	dollars	[2].	Deaths	of	those	with	AD	were	
about	600,000	 in	2010	and	are	projected	 to	 rise	 to	1.6	million	
by	 2050,	which	 is	 expected	 to	 be	 some	 43%	 of	 all	 older	 adult	
deaths	[3].	Beta-amyloid	(Abeta)	plaques	and	hyperphosphylated	
Tau	(pTau)	neurofibrillary	tangles	have	been	the	dominant	focus	
of	 research	 on	 AD	 pathophysiology	 since	 the	 disease	was	 first	
recognized	by	Alois	Alzheimer	 in	1906	[4,5].	While	plaques	and	
tangles	are	diagnostic	for	AD	[5-7],	the cause(s)	of	their	soluble	
precursors	 that	 kill	 neurons	 has	 not	 been	 determined.	 The	
majority	of	AD	patients	are	diagnosed	after	60	years	of	age.	Many	
studies	point	to	aging	related	processes	like	inflammation	[8-14],	
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Abstract 
Context: Currently,	there	is	no	treatment	that	can	stop	the	progression	of	Alzheimer’s	
disease.	 We	 have	 used	 transgenic	 Drosophila melanogaster models	 and	 machine	
learning	to	develop	an	eight	component	botanical	mixture	(Geneaire™	ReBuilder™)	
that	targets	multiple	genetic	pathways	involved	in	brain	aging	and	dementia	that	are	
homologous	between	Drosophila and	humans.	
Objective: To	 test	 the	 effects	 of	 ReBuilder	 on	 the	 cognitive	 function	 of	 subjects	
diagnosed	with	mild	or	moderate	Alzheimer’s	disease.	
Methods: We	 recruited	 50	 subjects	with	mild	 to	moderate	 AD	 to	 participate	 in	 a	
double-blind,	 placebo-controlled	 clinical	 study.	 During	 the	 12-month	 pilot	 study,	
the	 subjects	 were	 evaluated	 quarterly	 on	 the	 Mini	 Mental	 State	 Exam	 (MMSE),	
Alzheimer’s	Disease	Cooperative	Study’s	Activities	of	Daily	Living	(ADCS-ADL),	and	the	
Clinical	Dementia	Rating	Sum	of	Boxes	(CDR-SB).	
Results: The	addition	of	ReBuilder	to	subjects’	existing	Namenda	and	Exelon	regimens	
stabilized	cognitive	decline	in	patients	with	mild	AD	and	slowed	cognitive	decline	in	
patients	with	moderate	AD.	
Conclusions: These	 results	 were	 observed	 in	 both	 sexes	 and	 in	 all	 ages	 tested.	
Importantly,	 no	 adverse	 side	 effects	 attributable	 to	 ReBuilder	 were	 reported.	 The	
results	of	this	clinical	pilot	warrant	further	study	of	ReBuilder	in	AD.
Keywords: Alzheimer's	 disease;	 Dementia;	 Aging;	 Neurology;	 APOE;	 Genetics;	
Cognition

neural	vascular	damage	[15-21],	neural	stress	[9,22-32],	altered	
cell	 metabolism	 [33-37],	 cellular	 autophagy	 [38-45],	 microglial	
dysfunction	[46-48],	mitochondrial	dysfunction	[49-52],	astrocyte	
function	 [53-59]	and	dietary	 factors	 [60-65]	as	potential	 causal	
factors	 in	 the	 decline	 of	 brain	 function	 over	 the	 decades	 that	
precede	an	actual	AD	diagnosis.	AD	is	a	multifaceted	pathology	
involving	many	 biochemical	 pathways	 and	 thus	 a	multifaceted	
therapeutic	approach	may	prove	beneficial.

Drosophila melanogaster, the	 common	 fruit	 fly,	 has	 been	
extensively	 studied	 and	 is	 a	 highly	 tractable	 genetic	 model	
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organism	 for	 understanding	 molecular	 mechanisms	 of	 human	
diseases.	Many	basic	 biological,	 physiological,	 and	neurological	
properties	are	conserved	between	mammals	and	D. melanogaster,	
and	nearly	75%	of	human	disease-causing	genes	are	believed	to	
have	a	functional	homolog	in	the	fly	[66,67].	Therefore	we	used	
genetic	 and	machine	 learning	 approaches	 on	 age-related	 data	
bases	 for	 humans	 and	flies	 to	 identify	many	homologous	CNS-
specific	genetic	and	biochemical	pathways	involved	in	longevity.	
We	targeted	genes	known	to	be	 important	 in	AD	and	screened	
botanical	 products	 known	 to	 interact	 with	 the	 pathways	 we	
identified	using	transgenic	Drosophila models [68].	The	result	is	
ReBuilder,	a	7-component	botanical	supplement	that	is	effective	
in	 reducing	 neural	 dysfunction	 in	 our	Drosophila	model	 of	 AD.	
For	 this	 human	 pilot	 study,	 we	 added	 an	 eighth	 component,	
bioperine,	to	improve	absorption	of	ReBuilder.	

Materials and Methods
Fifty	human	 subjects	 of	mixed	 gender	between	 the	 ages	of	 60	
and	90	were	recruited	and	enrolled	in	this	double-blind,	placebo-
controlled,	 IRB-approved	 pilot	 clinical	 study.	 The	 subjects	 had	
been	on	stable	maximum	tolerated	doses	of	Memantine	and/or	
Rivastigmine	for	at	least	2	months,	and	nothing	was	changed	in	
their	 standard	 therapy	 for	 the	 duration	 of	 our	 pilot	 study.	 The	
subjects	were	randomly	assigned	to	either	the	active	or	placebo	
arm	 of	 the	 study.	 The	 subjects	 were	 evaluated	 approximately	
every	three	months	(quarterly)	from	October	2013	to	December	
2015.	The	subjects	were	referred	to	Genescient	Corporation	by	
William	R.	 Shankle,	MD,	and	evaluated	 in	 the	office	of	Cristina	
Rizza,	MD	in	Fountain	Valley,	CA.	

At	 the	 initial	 enrollment	 office	 visit,	 we	 administered	 the	Mini	
Mental	 State	 Examination	 (MMSE)	 and	 the	 Clinical	 Dementia	
Rating	 Sum	 of	 Boxes	 (CDR-SB)	 to	 each	 subject.	 Each	 subject’s	
caregiver	 was	 interviewed	 using	 the	 Alzheimer’s	 disease	
Cooperative	 Study’s	 Activities	 of	 Daily	 Living	 (ADCS-ADL)	
Inventory	 to	 assess	 the	 subject’s	 current	 self-care	 capabilities.	
After	 this	 initial	 visit,	 the	 subjects	 were	 instructed	 to	 begin	
taking	one	capsule	of	ReBuilder	in	the	morning	and	one	capsule	
in	the	evening	daily.	Each	subject	had	a	caregiver	who	ensured	
compliance	 in	 taking	 all	 their	 medications.	 The	 subjects	 and	
their	caregivers	returned	to	our	office	approximately	every	three	
months	to	have	the	aforementioned	tests	repeated.	ReBuilder	is	
currently	distributed	by	Geneaire.

The	components	of	the	ReBuilder	treatment	used	in	the	clinical	

study	and	their	known	actives	and	targets	are	given	 in	Table 1. 
The	formulation	is	protected	by	US	Patent	9744204.

Ethics
The	 subjects	 signed	 informed	 consent	 forms	 upon	 enrollment.	
This	study	protocol	was	approved	by	the	Institute	of	Regenerative	
and	 Cellular	 Medicine	 Institutional	 Review	 Board	 (approval	
number:	 ICSS-2013-007).	This	study	is	registered	on	the	Clinical	
Trails	website	of	the	United	States	government	(NCT03611439).

Statistics
Throughout	 the	 12-month	 period,	 the	 subjects’	 scores	 on	 the	
MMSE,	ADCS-ADL,	and	CDR-SB	were	recorded	and	compared	to	
their	 initial	baseline	scores.	The	subjects’	mean	test	scores	and	
changes	in	their	mean	test	score	were	plotted	in	relation	to	their	
average	 baseline	 scores	 and	 presented	 with	 95%	 confidence	
intervals.	Only	the	subjects	for	whom	we	had	data	for	the	initial	
visit	and	all	4	subsequent	quarters	were	included	in	the	analysis	
presented	here.

To	maximize	the	number	of	subjects	that	would	be	assigned	the	
active	botanical	compound,	43	subjects	were	given	ReBuilder	and	
only	7	patients	were	assigned	to	the	placebo	arm	of	the	study.	
To	make	up	for	the	small	number	of	subjects	in	the	placebo	arm	
(only	 5	 completed	 the	 trial),	 we	 compared	 the	 data	 from	 our	
active	subjects	to	previously	published	data	from	471	AD	subjects	
of	matched	demographics	and	AD	symptoms	from	the	study	by	
Bernick	et	al.	The	subjects	in	this	previously	published	study	were	
treated	and	tested	in	the	same	manner	as	our	placebo	arm.	Our	5	
placebo	subjects	experienced	similar	loss	of	cognitive	function	as	
measured	by	MMSE,	ADCS-ADL,	and	CDR-SB	as	the	471	placebo	
subjects	 in	 the	 Bernick	 study.	Moreover,	with	 the	 large	 clinical	
study	 from	Bernick	et	 al.	we	were	able	 to	match	all	 the	active	
subjects	 in	 our	 pilot	 with	 large	 numbers	 of	 age	 and	 condition	
matched	surrogate	placebo	controls.

Results
Thirty	 out	 of	 the	 43	 subjects	 receiving	 ReBuilder	 successfully	
completed	 our	 12-month	 pilot	 study.	 Of	 those	 30,	 17	 were	
categorized	 as	 “mild”	 in	 disease	 severity	 based	 on	 an	 initial	
score	at	enrollment	of	21	to	30	points	out	of	a	possible	30	points	
on	 the	 Mini	 Mental	 Status	 Exam	 (MMSE),	 a	 widely	 used	 test	
for	 dementia.	 The	 remaining	 13	 subjects	 were	 categorized	 as	
“moderate”	 in	disease	severity	based	on	an	 initial	MMSE	score	

Component Known Active (s) Targets References

Astragalus membranaceus (extract) Astrogalosides	I-VII	Flavenoids,	
HDTICs

Telomerase,	Mitochondria,	ptau,		mTOR,	TNF-α,	
ERK,	AMPK [69-75]

Berberine	HCL	 Berberine	(98%) Acetylcholinesterase,	AMPK,	α-adrenergic	
receptors,	β-Amyloid [76-81]

Vaccinium uliginosum or 
Pterocarpus marsupium	(extracts)	 Resveratrol	Analogs PPARα,	PGE2,	AMPK,	phosphodiesterase,	

Mitochondria [82-86]

L-Theanine	 L-Theanine	(98%) NMDA	receptors,	EAATs,	GABA	receptors,	eNOS,	
mitochondria [87-93]

Genistein Genistein	(98%) ERα,	AMPK,	p450c21,	PRPF8 [94-96]
Lithium	Orotate Lithium NCS-1/Frequenin,	Abeta,	NMDA,	GSK3B,	ptau	 [97-105]

Selenium	Glycinate Selenium PRPF8,	ERCC1,	Selenoproteins [106-108]

Table 1 Composition,	known	actives,	and	targets	of	treatment	(US	Patent	9744204).
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of	11	to	20	points.

During	 the	 course	 of	 the	 12-month	 pilot	 study,	 the	 mild	 and	
moderate	 subjects	 taking	 ReBuilder	 maintained	 MMSE	 scores	
close	 to	 their	 initial	 baseline	 scores.	 The	 ReBuilder	 	 	

	 	 	
subjects

	
did

	not 	experience 	the 	rate 	of 	decline 	seen
	

in
	

the
	

subjects
	

from
	

the
	Bernick 	study 	[109], 	which 	we 	used 	as

	
our

	
benchmark

	
control

	
for

	the 	expected 	rate 	of 	decline 	during 	the
	

same
	

study
	

(Figure 1A). 

Looking	at	the	17	mild	subjects	who	completed	the	pilot,	there	
appears	to	be	a	pronounced	preservation	of	the	baseline	MMSE	
scores	after	12	months	of	treatment	(Figure 1B). 

Looking	 at	 the	 13	 subjects	 with	 moderate	 AD	 who	 received	
ReBuilder	 and	 completed	 the	 pilot	 study,	 there	 is	 also	 a	
pronounced	preservation	of	baseline	MMSE	score.	The	moderate	
AD	 subjects	 taking	 ReBuilder,	 as	 with	 the	 mild	 AD	 subjects,	
continued	to	score	much	closer	to	their	baseline	than	the	subjects	
in	the	Bernick	study	(Figure 1C).

The	 trend	 of	 baseline	 score	 maintenance	 in	 subjects	 taking	
ReBuilder	 continues	 if	 we	 separate	 the	 subjects	 by	 gender.	
Generally,	Alzheimer’s	disease	affects	more	women	than	men	due	
to	women	having	longer	average	lifespans,	and	possibly	because	
of	hormonal	differences	between	the	genders.	In	our	pilot	study,	
we	had	nearly	equal	numbers	of	 each	gender,	with	16	women	
and	14	men.	Both	genders	saw	positive	effects	when	ReBuilder	
was	added	to	their	standard	therapy	(Figures 1D and 1E).

The	 E4	 variant	 of	 the	 Apolipoprotein E (APOE)	 gene	 puts	 an	
individual	at	an	increased	risk	of	developing	Alzheimer’s	disease.	
The	risk	increase	is	present	in	an	individual	with	one	copy	of	the	
E4	allele,	and	greater	still	if	the	individual	has	2	copies.	The	APOE4 
gene	variant	is	associated	with	an	increased	number	of	amyloid	
protein	 plaques	 in	 the	 brain	 tissue	 of	 affected	 individuals	 and	
earlier	onset	of	AD	symptoms	[110].	In	our	pilot	study,	we	had	14	
subjects	taking	ReBuilder	who	carried	at	least	one	E4	allele.	While	
it	took	6	months	for	these	subjects	to	see	an	effect	from	taking	
ReBuilder,	the	overall	changes	in	their	MMSE	scores	were	positive	
by	Q4	(Figure 1F).

The	 Alzheimer’s	 Disease	 Cooperative	 Study	 Activities	 of	 Daily	
Living	 (ADCS-ADL)	 is	 a	questionnaire	widely	used	 to	 assess	 the	

Figure 1A Mean	MMSE	 Scores	 for	 All	 Subjects.	 Average	MMSE	
scores	 for	 ReBuilder	 study	 subjects	 and	 the	 Bernick	
group	over	the	course	of	12	months.

Figure 1B Mean	 MMSE	 Scores	 for	 Mild	 Subjects.	 Average	
MMSE	scores	for	mild	subjects	in	the	ReBuilder	study	
compared	to	the	Bernick	group	over	12	months.

Figure 1C Mean	 Mini	 Mental	 State	 Exam	 (MMSE)	 Scores	
for	 Moderate	 Subjects.	 	 Average	 MMSE	 score	 for	
moderate	subjects	in	the	ReBuilder	study	compared	to	
the	Bernick	group.

Figure 1D Mean	 Mini	 Mental	 State	 Exam	 (MMSE)	 Scores	 for	
Female	 Subjects.	 	 Female	 subjects	 taking	 ReBuilder	
during	our	pilot	study	were	able	to	maintain	a	MMSE	
score	closer	to	the	baseline	than	those	in	the	Bernick	
study.

competence	of	 patients	with	Alzheimer’s	Disease	 (AD)	 in	 basic	
and	 instrumental	 activities	 of	 daily	 living	 (ADL).	 The	 ADCS-ADL	
scores	competence	 in	daily	activities	on	a	78-point	scale.	Slight	
score	changes	 in	 this	assessment	can	 indicate	that	a	subject	 is,	
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or	is	not,	able	to	choose	appropriate	clothing	or	prepare	a	simple	
meal. 

On	average,	our	subjects	taking	ReBuilder	gained	2.34	points	on	
this	measure	 after	 12	months	 of	 treatment.	 The	 control	 group	
is	expected	to	have	lost	6.67	points	during	the	same	amount	of	
time	(Figure 2A). 

The	17	mild	subjects	who	completed	the	pilot	appear	to	display	
an	improvement,	on	average,	of	ADCS-ADL	scores	after	12	months	
of	treatment	(Figure 2B). 

The	ADCS-ADL	scores	of	the	13	subjects	with	moderate	AD	who	
completed	 the	pilot	 study	did	 not	 see	 an	overall	 improvement	
compared	 to	 their	 mean	 baseline	 scores	 after	 12	 months	 of	
treatment.	However,	the	mean	point	loss	of	1.69	still	falls	quite	
short	 of	 the	projected	point	 loss	 of	 6.67	based	on	 the	Bernick	
study	(Figure 2C).

When	 the	 subjects	 in	 our	 pilot	 study	 are	 separated	by	 gender,	
the	 overall	 improvement	 in	 activities	 of	 daily	 living	 remains.	
The	 subjects	 taking	ReBuilder	 achieve	 and	maintain	 a	 clinically	
meaningful	 improvement	 in	 the	 ADCS-ADL	 assessment	 that	 is	

Figure 1E Mean	Mini	Mental	State	Exam	(MMSE)	Scores	for	Male	
Subjects.	 	Male	 subjects	 taking	 ReBuilder	 during	 our	
pilot	 study	 took	6	months	 to	 see	an	 improvement	 in	
their	MMSE	score.		BY	Q4	the	men	rebounded	back	to	
their	baseline	score.		

Figure 1F Mean	 Mini	 Mental	 State	 Exam	 (MMSE)	 Scores	 for	
APOE4	Subjects.		Average	MMSE	scores	of	the	ReBuilder	
subjects	 eventually	 rebounded	 to	 baseline	 by	 the	 end	
of	12	months.

Figure 2A Mean	 Alzheimer’s	 Disease	 Cooperative	 Study	 Activities	
of	 Daily	 Living	 (ADCS-ADL)	 Scores	 for	 All	 Subjects.	 	 The	
mean	 score	 for	 all	 subjects	 taking	 ReBuilder	 rises	 above	
their	 initial	 baseline	 average	 score	 and	 maintains	 that	
improvement	for	the	duration	of	the	pilot	study.

Figure 2B Mean	 Alzheimer’s	 Disease	 Cooperative	 Study	 Activities	
of	Daily	Living	(ADCS-ADL)	Scores	for	Mild	Subjects.	 	On	
average,	the	Mild	AD	subjects	taking	ReBuilder	improved	
in	Activities	of	Daily	Living	and	remained	above	baseline	
for	the	duration	of	the	study.

Figure 2C Mean	 Alzheimer’s	 Disease	 Cooperative	 Study	 Activities	
of	Daily	Living	(ADCS-ADL)	Scores	for	Moderate	Subjects.		
Moderate	 subjects	 taking	 ReBuilder	 remained	 close	 to	
their	baseline	score	for	the	duration	of	the	study.
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above	 their	 average	 baseline	 scores,	 and	 far	 above	 the	 score	
projected	based	on	the	Bernick	study	at	the	end	of	12	months,	
regardless	of	gender	(Figures 2D and 2E).

Separating	 out	 the	 subjects	 with	 the	APOE4 genetic	 variant,	 a	
clinically	meaningful	improvement	in	the	ADCS-ADL	assessment	
is	still	observed	at	the	end	of	12	months	(Figure 2F).

The	 Clinical	 Dementia	 Rating	 (CDR-SB)	 is	 used	 to	 quantify	 the	
severity	 of	 symptoms	 of	 dementia.	 This	 measure	 assesses	 a	
subject’s	 cognitive	 and	 functional	 performance	 in	 six	 areas:	
memory,	 orientation,	 judgment	&	problem	 solving,	 community	
affairs,	home	and	hobbies,	and	personal	care.	Scores	in	each	of	
these	are	combined	to	obtain	a	composite	score,	with	a	higher	
score	indicating	greater	severity	of	dementia	symptoms.

Overall,	 the	 subjects	 taking	 ReBuilder	 in	 our	 pilot	 study	
maintained	a	CDR-SB	score	close	to	their	baseline.	This	suggests	
that	 the	 subjects’	 severity	 of	 dementia	 symptoms	 did	 not	
increase	as	expected	over	the	12-month	pilot	study	and	that	they	
experienced	better	stability	in	their	symptoms	(Figure 3A). 

For	 our	 mild	 subjects,	 the	 mean	 CDR-SB	 scores	 stayed	 above	
baseline	for	the	 latter	portion	of	the	pilot,	possibly	 indicating	a	
reduction	in	dementia	symptoms	(Figure 3B).

For	moderate	subjects,	the	severity	of	their	dementia	symptoms	
does	increase	by	the	end	of	the	pilot	study,	but	not	to	the	same	
degree	 that	 is	 seen	 in	 the	 Bernick	 group	 over	 the	 same	 time	
period	(Figure 3C).

When	 the	 subjects	 taking	 ReBuilder	 are	 separated	 by	 gender,	
we	still	see	a	reduction	in	dementia	severity	as	indicated	by	the	
average	CDR-SB	scores	(Figures 3D and 3E).

Looking	 at	 the	 subjects	 with	 the	APOE4	 genetic	 variant	 [110],	
we	 also	 see	 a	 reduction	 in	 dementia	 symptoms.	 This	 suggests	
that	 ReBuilder	 can	 improve	 the	 symptoms	of	 those	 genetically	
predisposed	to	Alzheimer’s	disease	(Figure 3F).

On	 the	 whole,	 the	 above	 results	 show	 that	 subjects	 taking	
ReBuilder	during	our	12-month	pilot	at	least	slowed	in	their	AD	
progression	as	indicated	by	the	MMSE,	ADCS-ADL,	and	CDR-SB.	In	
some	measures,	the	subjects	appear	to	stabilize	and	even	reduce	
their	AD	symptoms.	No	adverse	side	effects	such	as	changes	 in	
mood,	sleeping	habits,	balance	issues,	or	digestive	disturbances	
were	observed	in	the	subjects	treated	with	ReBuilder.

Figure 2D Mean	Alzheimer’s	Disease	Cooperative	Study	Activities	
of	Daily	Living	(ADCS-ADL)	Scores	for	Female	Subjects.		
Female	subjects	taking	ReBuilder	maintained	scores	above	
their	baseline	for	the	duration	of	the	study.

Figure 2E Mean	Alzheimer’s	Disease	Cooperative	Study	Activities	of	
Daily	 Living	 (ADCS-ADL)	 Scores	 for	Male	 Subjects.	 	 Male	
subjects	 taking	 ReBuilder	 maintained	 ADL	 scores	 above	
their	baseline	for	the	duration	of	the	study.

Figure 2F Mean	 Alzheimer’s	 Disease	 Cooperative	 Study	 Activities	
of	 Daily	 Living	 (ADCS-ADL)	 Scores	 for	 APOE4	 Subjects.		
Subjects	 genetically	 predisposed	 to	 Alzheimer’s	 taking	
ReBuilder	maintained	ADL	scores	close	to	their	baseline	for	
the	duration	of	the	study.

Figure 3A Mean	Clinical	Dementia	Rating	Sum	of	Boxes	 (CDR-SB)	
Scores	for	All	Subjects.	On	average,	CDR-SB	scores	stayed	
very	close	to	baseline	for	subjects	taking	ReBuilder.	Note	
that	the	score	scale	on	the	Y-axis	is	inverted	to	show	that	
a	 decreasing	 CDR-SB	 score	 indicates	 improvement	 of	
symptoms.
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Figure 3B Mean	 Clinical	 Dementia	 Rating	 Sum	 of	 Boxes	 (CDR-SB)	
Scores	 for	Mild	 Subjects.	Mild	 subjects	 taking	ReBuilder	
saw	a	reduced	CDR-SB	score	by	the	end	of	the	pilot	study.	
Note	that	the	score	scale	on	the	Y-axis	is	inverted	to	show	
that	a	decreasing	CDR-SB	score	indicates	improvement	of	
symptoms.

Figure 3C Mean	 Clinical	 Dementia	 Rating	 Sum	 of	 Boxes	 (CDR-SB)	
Scores	 for	 Moderate	 Subjects.	 Moderate	 AD	 subjects	
taking	 ReBuilder	 had	 symptoms	 close	 to	 baseline	 until	
the	last	quarter	of	the	study.	Note	that	the	score	scale	on	
the	Y-axis	 is	 inverted	to	show	that	a	decreasing	CDR-SB	
score	indicates	improvement	of	symptoms.

Figure 3D Mean	 Clinical	 Dementia	 Rating	 Sum	 of	 Boxes	 (CDR-
SB)	 Scores	 for	 Female	 Subjects.	 Female	 Subjects	 taking	
ReBuilder	 saw	 a	 reduction	 in	 dementia	 severity	 on	
the	 CDR-SB.	 Note	 that	 the	 score	 scale	 on	 the	 Y-axis	 is	
inverted	to	show	that	a	decreasing	CDR-SB	score	indicates	
improvement	of	symptoms.

Figure 3E Mean	Clinical	Dementia	Rating	Sum	of	Boxes	 (CDR-SB)	
Scores	for	Male	Subjects.	Male	subjects	taking	ReBuilder	
reduced	their	dementia	rating	on	the	CDR-SB.	Note	that	
the	 score	 scale	 on	 the	 Y-axis	 is	 inverted	 to	 show	 that	
a	 decreasing	 CDR-SB	 score	 indicates	 improvement	 of	
symptoms.2015.

Discussion
The	 subjects	 with	 mild	 and	 moderate	 AD	 in	 our	 pilot	 study	
experienced	 clinically	 meaningful	 stabilization	 in	 their	 disease	
progression	over	a	12	month	period	compared	with	the	decline	
expected	based	on	the	Bernick	study	[109].	The	results	for	mild	
and	moderate	AD	subjects	occurred	 regardless	of	 the	 subjects’	
age,	gender,	or	genetic	status	with	respect	to	the	APOE4	genetic	
variant	 [111-114].	The	benefit	of	 reduced	mental	decline	by	all	
measures	was	 greater	 in	 patients	 diagnosed	with	mild	 AD	 and	
less	 pronounced	 in	 moderate	 AD	 subjects.	 This	 suggests	 that	
treatment	with	ReBuilder	is	beneficial	regardless	of	age,	gender,	
APOE4	 status,	 or	 disease	 severity	when	 added	 to	 standard	 AD	
treatment. 

Though	no	quantitative	biomarker	studies	were	done	during	this	
pilot	study,	the	positive	effects	seen	in	cognitive	function	suggest	

that	 there	 are	 biological	 changes	 taking	 place	 that	 should	 be	
investigated	further.	ReBuilder	is	composed	entirely	of	botanical	
substances	that	are	generally	regarded	as	safe	(GRAS)	by	the	FDA,	
and	no	deleterious	side	effects	were	reported	or	observed	that	
were	attributed	to	ReBuilder	in	this	pilot	study.	Therefore,	there	is	
the	potential	for	ReBuilder	to	not	only	 	 used	as	a	supplemental	
AD	 treatment,	 but	 also	 prophylactically	 as	 a	 part	 of	 a	 normal	
individual’s	daily	dietary	supplement	regimen.	

While	 we	 cannot	 make	 definitive	 claims	 on	 the	 success	 of	
ReBuilder	due	to	the	small	number	of	subjects	 in	this	pilot,	we	
can	say	that	the	improvement	in	cognitive	function	that	we	have	
seen	in	subjects	taking	ReBuilder	warrants	further	study	in	a	larger	
AD	cohort	with	biomarker	assessment.	In	future	clinical	studies,	
advanced	imaging	technologies	[33,115-120]	should	be	used	to	
verify	that	ReBuilder	has	effects	on	structural	outcomes	such	as	
amyloid	plaques,	Tau	tangles,	and	neuronal	loss	prevention	with	
time.

be
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Figure 3F Mean	 Clinical	 Dementia	 Rating	 Sum	 of	 Boxes	 (CDR-SB)	
Scores	for	APOE4	Subjects.	Subjects	taking	ReBuilder	who	
are	positive	for	the	APOE4	gene	variant	saw	a	reduction	
in	 dementia	 symptoms,	 on	 average,	 as	 measured	 by	
the	 CDR-SB.	 	 Note	 that	 the	 score	 scale	 on	 the	 Y-axis	 is	
inverted	to	show	that	a	decreasing	CDR-SB	score	indicates	
improvement	of	symptoms.
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